

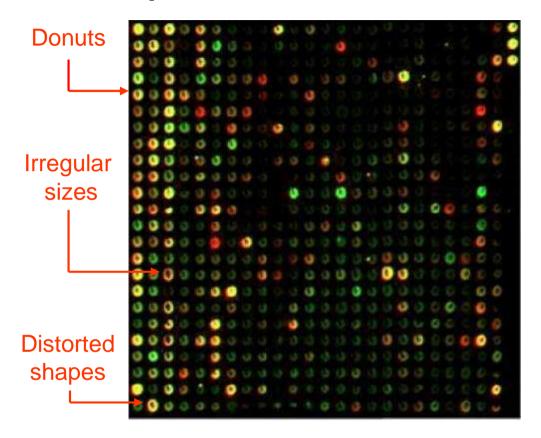
Wetting of Surfaces

Glen McHale

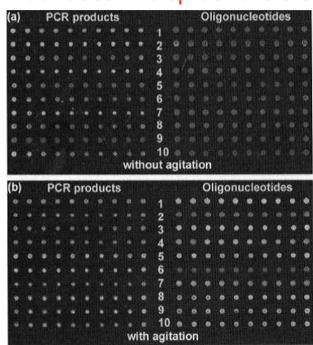
School of Biomedical & Natural Sciences Nottingham Trent University

Email: glen.mchale@ntu.ac.uk

<u>Overview</u>


- 1. The Need to Understand Wetting
- 2. Wetting Issues in Spotted Microarrays
- 3. Principles of Wetting

The Need to Understand Wetting


An Overview - Three Examples

- 1. Spotted Microarrays
- 2. Liquid Confinement
- 3. Droplet Microfluidics

Spotted Fluorescent Microarrays

Micro-mixing improves intensity, but doesn't stop donut's etc:

Wetting Dominated Effects

- Donut or "coffee/ring-stain" effect
- Size, shape, uniformity and reproducibility of deposition
- Drying effects (evaporative considerations)

Liquid Confinement

Non-circular droplet

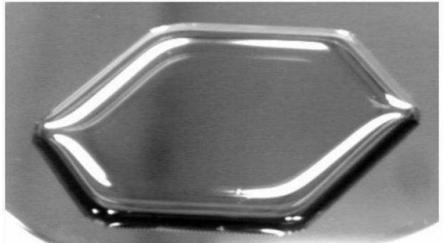
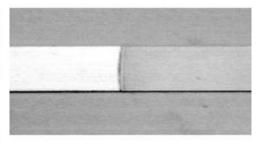
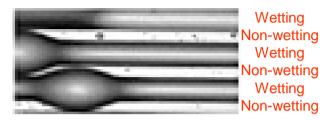
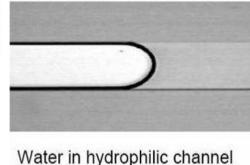
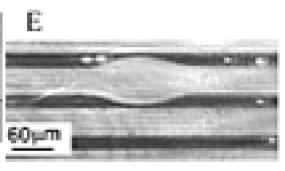




Figure 18

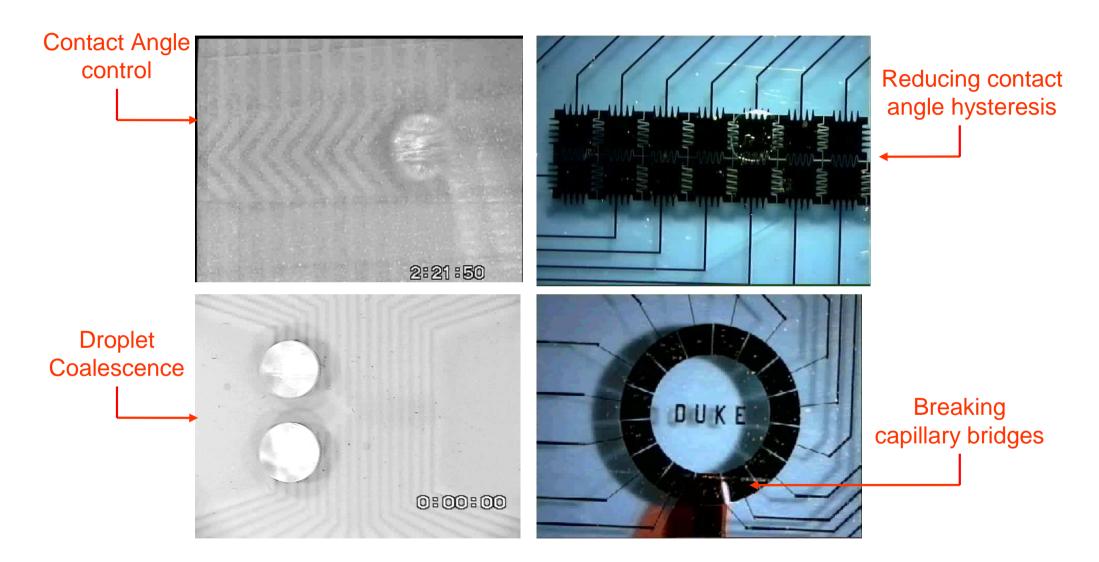
Large sessile drop setting on a hexagonal array of small non-wetting defects (d = 0.4 mm). The size of the drop is 3 cm.


Meniscus



Virtual Channels

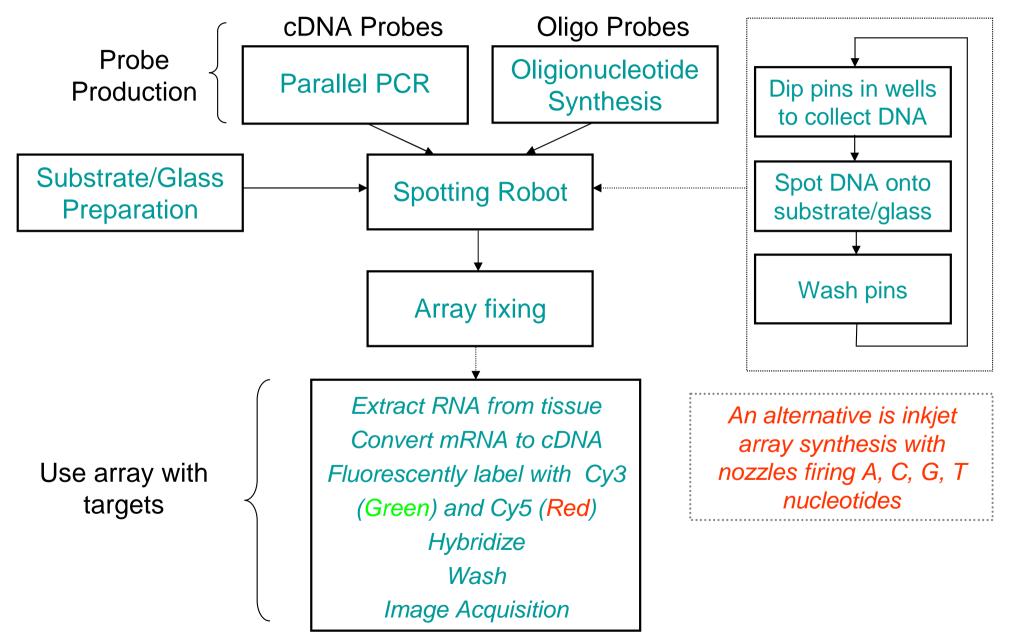
Water in hydrophobic channel


Hydrophobic/Hydrophilic & Surface Tension

- Virtual tracks/confinement, micro-flow patterns, actuating forces, microcontact printing, etc
- Self assembly and self organisation

<u>Acknowledgement</u>

Max Planck Institute for Polymers & Colloids; Huang *et al*, Purdue Univ.; Fermigier *et al*, Oil & Gas Science and Technology – Rev. IFP, <u>56</u> (2001)


Droplet Microfluidics

Spotted Microarrays

Wetting Issues

Spotted Microarray Principles

Microarray Considerations

Critical Parameters

- Spot shape
- Spot size
- Concentration

Quality Issues

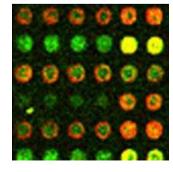
- Print quality
- Substrate chemistry and hydrophobicity
- Spotting buffer viscosity, pH, evaporation, probe concentration
- Array hybridization quality

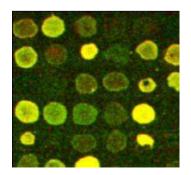
 \Rightarrow

Spot quality

Halo's (High localized background/saturation)

Donuts (Circles with holes in centre)

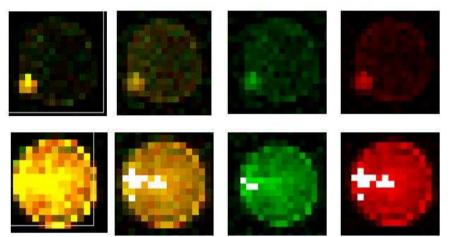

Irregular spot shape

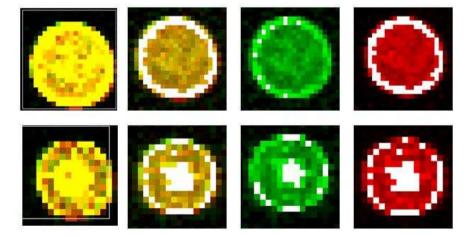

Pin blockages

Particle/dust contamination, bubbles

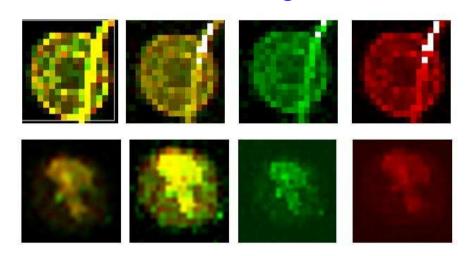
Technologies

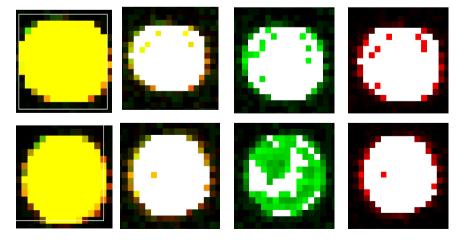
- Pins or Needles
- Pin & Ring
- Inkjet Printing




Example Effects

SMD, Genepix overlay, Cy3, Cy5


Dust Speck/Dust in Spot


Donut/Saturation in Centre

Streak/Heterogeneous

Saturated in 1 or 2 Channels

Acknowledgement Shauna Somerville "Flagged Spots Examples" (2002), Carnegie Institution(Spotted cDNA microarrays)

Principles of Wetting

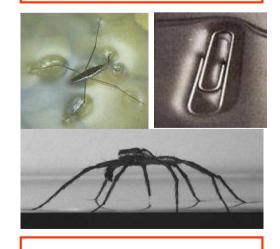
Capillarity

Size Matters

Liquid Surface & Surface Tension

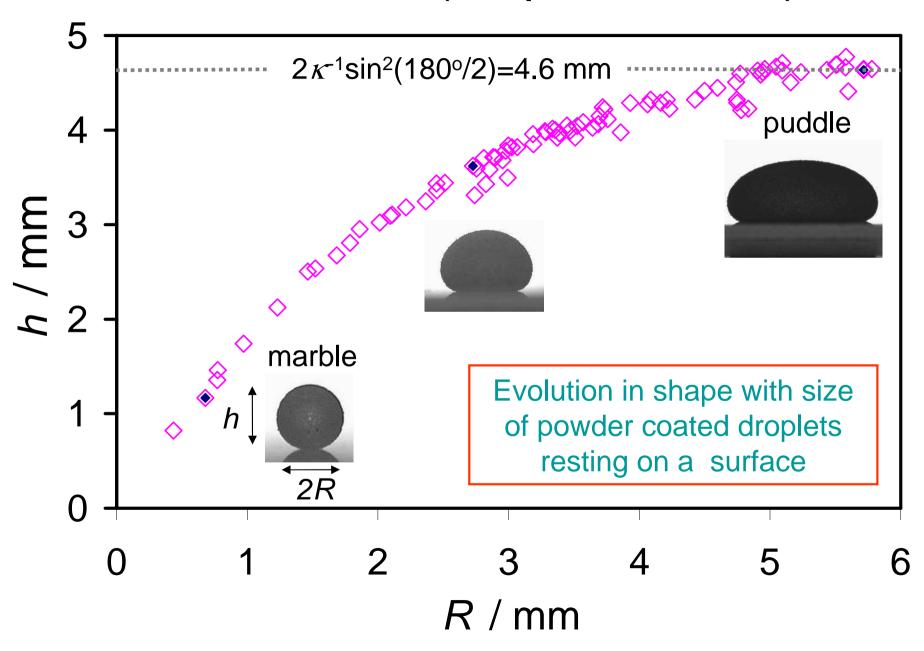
- Behaves as if it is in a state of tension
- Surface tends to minimize its area in any situation
- For a free droplet, the smallest area is obtained with a sphere – otherwise all interfacial tensions matter
- Surface tension γ_{LV} is energy per unit surface area or force per unit length

Capillary Length


- Surface tension forces scale with length
- Gravity force scales with length³

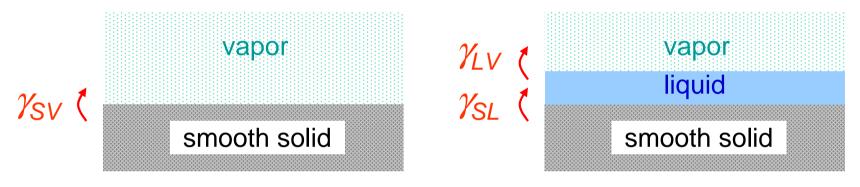
Small sizes ⇒ Surface tension wins over gravity

- Small means << 2.7 mm for water
- Characteristic speed = ratio of γ_{IV} to viscosity



$$\kappa^{-1} = (\gamma_{LV}/\rho g)^{1/2}$$

$$V^*=\gamma_L / \eta$$


Size Data ("Liquid Marble")

Film Formation

Smooth and Flat Surface

Is it energetically favorable for a layer of liquid to form on a surface?

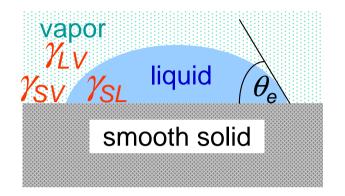
Film forms when: $\gamma_{SV} > (\gamma_{SL} + \gamma_{LV})$

Spreading Power

$$S = (\gamma_{SL} + \gamma_{LV}) - \gamma_{SV}$$
 $S > 0 \Rightarrow$ spreads into film (*complete wetting*) $S < 0 \Rightarrow$ remains as droplet (*partial wetting*)

Cautions

Not true on curved surfaces (i.e. capillaries, fibers)

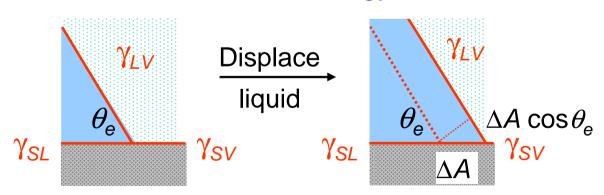

Not true on patterned surfaces (topographically or chemically patterned)

Droplet Formation & Contact Angle

Young's Law

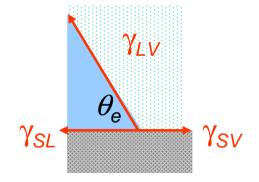
Summarises surface chemistry What is the equilibrium contact angle, $\theta_e > 0$?

$$\cos\theta_{\rm e} = (\gamma_{\rm SV} - \gamma_{\rm SL})/\gamma_{\rm LV}$$



Link to spreading power: $S = \gamma_{1} \sqrt{1 - \cos \theta_{e}}$

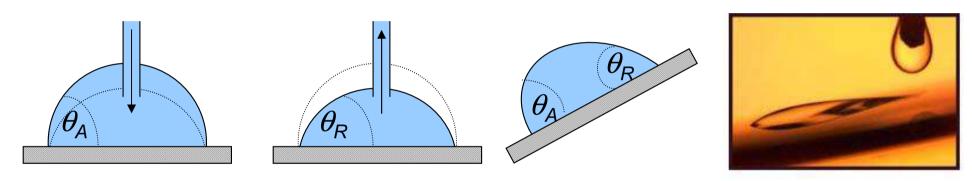
$$S = \gamma_{LV} (1 - \cos \theta_{e})$$


Contact angle is only meaningful when >0°

Minimum Energy

$$\Delta F = (\gamma_{SL} - \gamma_{SV}) \Delta A + \gamma_{LV} \Delta A \cos \theta_e \rightarrow 0$$

Force Balance



$$\gamma_{SL} + \gamma_{LV} \cos \theta_e = \gamma_{SV}$$

Contact Line Pinning

Advancing & Receding Contact Angles

- Increase/decrease volume until edge moves
- Tilt stage until droplet moves Front and back edge angles

Withdrawing a needle/pin causes a receding contact angle

Droplet Motion

- Force to overcome contact line pinning scales as $\gamma_L \sqrt{\cos \theta_R \cos \theta_A}$
- Freely spreading droplet has driving force due to difference between dynamic contact angle and Young's contact angle $\gamma_L (\cos \theta_e \cos \theta)$

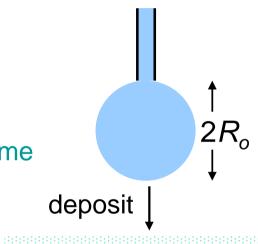
Droplet Size & Contact Angle

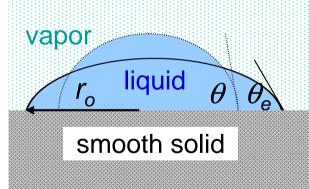
Spreading on Deposition

Initial volume $V_0 = 4\pi R_0^3/3$

Driving force is $\gamma_{LV}[\cos\theta_{\rm e}\text{-}\cos\theta] \rightarrow 0$

Droplet spreads down to equilibrium angle θ_{e}


Spot size determined by contact angle and initial volume


$$r_o = (4/\beta)^{1/3} R_o \sin \theta_e$$
 $\beta = (1-\cos \theta_e)^2 (2+\cos \theta_e)$

Spot Size Errors

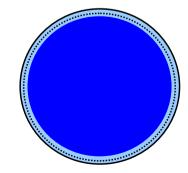
 $r_o \approx 6.75 R_o / \theta_e^{1/3}$ θ_e in degrees and small

% error in r_o = % error in R_o % error in r_o = One-third the % error in θ_e % error in A_{SL} = Double the % error in R_o

Size Examples

Water-on-Glass

θ_e for glass is 15° -50°
$\theta_{\!\scriptscriptstyle e}$ for microscope slides is 27° -37°
Hydrophilic/clean glass $\theta_e \! o \! 0^{\mathrm{o}}$
"Touch" detachment

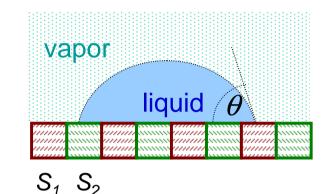

Example Size Errors

$R_d/\mu m$	V_g/pL	$ heta_{\!e}^{ ext{o}}$	<i>r_o</i> /μm	A _{SL} /mm²
30±3	113±35	8	101±10	0.032±0.007
30±3	113±35	15	82±8	0.021±0.004
30±3	113±35	27	67±7	0.014±0.003
30±3	113±35	37	59±6	0.011±0.002
30	113	8→15	101→82 18%	0.032→0.021 34%

Water-on-Aminopropylsilane Coated Glass

Data from Erie microarray	<i>R_o</i> /μm	V_o/pL	C	$r_o/\mu m$	A _{SL} /mm²
$\theta_{\rm e}$ for water is 40° ±5°	30	113	35	60.5	0.0115
o_e for water is 40 ±5	30	113	40	• • • •	0.0104)18%
No receding angle given	30	113	45	54.8	0.0094

 $40^{\circ}\pm5^{\circ}$ gives a $\pm5\%$ error in spot radius $40^{\circ}\pm5^{\circ}$ gives a $\pm10\%$ error in spot area



Surface Heterogeneity

Chemical Heterogeneity

Average cosines using surface fraction f

$$\cos \theta_{CB} = f \cos \theta_1 + (1-f) \cos \theta_2$$
 Cassie-Baxter

Example

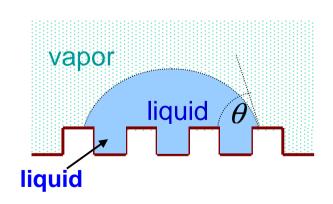
Aminosilane coated glass (θ_I =40°) with patches of clean glass (θ_2 =0°).

$$\cos \theta_{CB} = f \cos 40^{\circ} + (1-f) \cos 40^{\circ} = 0.766f + (1-f)$$

% Patch	$\underline{ heta}_{CB}$	Comment
10%	37.9°	4% incr. in spot area
25%	34.5°	12% incr. in spot area
50%	28.0°	31% incr. in spot area

Roughness/Topography

Amplify cosine using roughness factor, *r*


$$\cos \theta_W = r \cos \theta_e$$

Wenzel

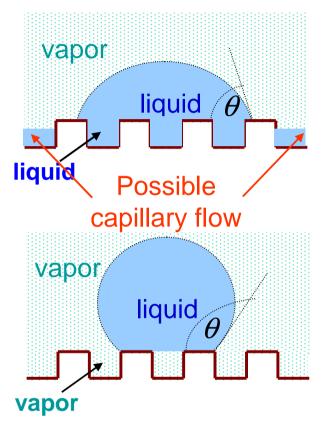
Example

Aminosilane coated glass (θ_e =40°)

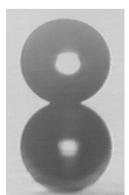
r=1.07 (~ 1 nm ht every 30 nm) \Rightarrow 35° \Rightarrow 12% incr. in spot area r=1.15 (~ 1 nm ht every 14 nm) \Rightarrow 28° \Rightarrow 31% incr. in spot area

Extreme Effects of Roughness

"Sticky" Surfaces


Increases hysteresis ("sticky") surface May get capillary flow into surface features

Super-Hydrophobicity & "Slippy" Surfaces


If surface protrusions thin and tall, and hydrophobicity high enough may get "skating" droplet Decreases hysteresis ("slippy") surface – mobile droplet

$$\cos \theta_{CB} = f \cos \theta_{e} + (1-f) \cos 180^{\circ}$$
$$\Rightarrow \cos \theta_{CB} = f \cos \theta_{e} - (1-f)$$

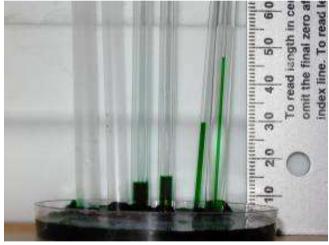
Cassie-Baxter on solid-air surface

Capillary Rise

Rise Inside a Tube

If surface energy $\gamma_{l,l} > \gamma_{Sl}$, liquid rises in a tube until rise is balanced by extra weight of liquid column

$$\theta_{\rm e}$$
 < 90° \Rightarrow Liquid rises in tube


$$\theta_e$$
 > 90° \Rightarrow Liquid depressed in tube

$$H/\kappa^{-1} = 2 \kappa^{-1} \cos \theta_e/r$$

Strongest effect is for a thin tube

Water,
$$r=10 \mu \text{m}$$
, $\theta_e = 0^\circ \Rightarrow H= 1.49 \text{ m}$
widen r to 50 $\mu \text{m} \Rightarrow H= 0.299 \text{ m}$

Rise on Outside of a Solid Fiber

Complex, but for
$$\theta_e = 0^\circ$$
 \Rightarrow

Water,
$$r=10 \mu m$$
, $\theta_e = 0^{\circ} \Rightarrow H=63 \mu m$

$$H = r \cosh^{-1}(1/r\kappa) \sim r \log_e(2/r\kappa)$$

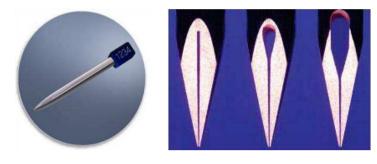
Spotting Pins & Capillary Rise

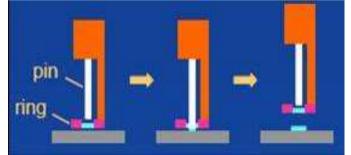
Spotting Process

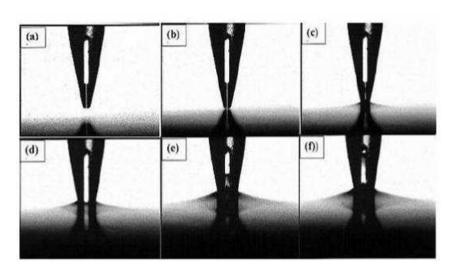
Pin types: Solid pin, split/quill/slotted pin, pin & ring

Liquid uptake by capillary rise

Spots printed via capillary bridge/adhesion


Spots of 50-500 µm diameter


Optional flat hydrophilic tips to allow liquid film to form and "low/non-contact" spotting. Alternatives includes pin-and-ring.



100 μ m slot, 20 μ m exit

- (a), (b) Pin approaches distilled water
- (c) Rapid rise up outside of pin and partially up slot with speed determined by γ_{LV} and η , θ s and widths (>12 mm/s)
- (d)-(f) Slower capillary filling of larger reservoir

<u>Acknowledgement</u> www.FlyChip.com; TeleChem. Intl.; J.A. Love, Whitehead Institute Center for Microarray Technology; Stealth Micro Spotting pins; Anke Becker, Bielefeld University.

Dripping and Jetting Droplets

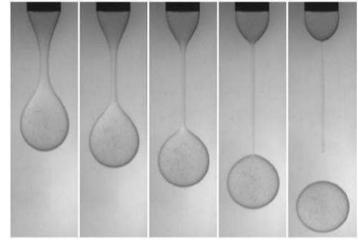
Size of a Dripping Drop

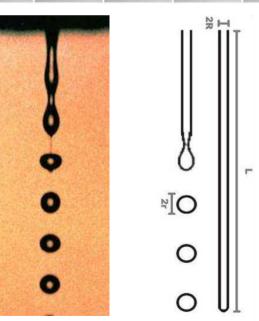
Inside radius, *r*, of tube determines size

$$R_{drop} \sim (3r \kappa^{-2}/2\alpha)^{1/3}$$

Factor $\alpha \sim 0.6$

r=10 μm, water $\Rightarrow R$ = 571 μm (**very large**)

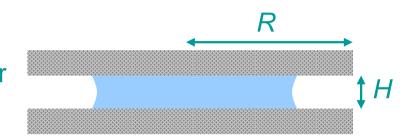



Area of tube to area of *n* droplets

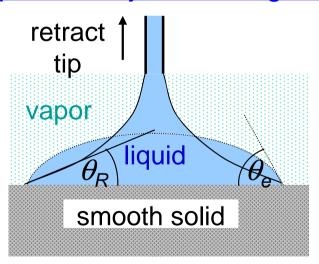
$$\frac{S_n}{S_o} = \frac{3R}{2r}$$

Energetically droplets can be more stable Induced when <u>disturbance</u> wavelength $\lambda > 2 \pi R$ Typically $r \sim 1.9$ x aperture radius

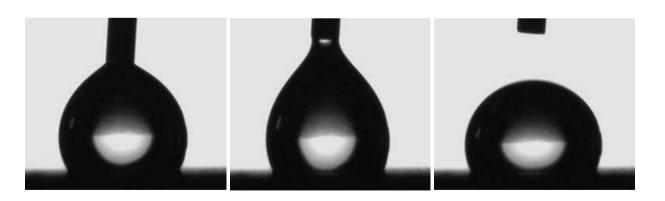
Much smaller droplets than in the dripping case



Capillary Adhesion and Bridges


Capillary Adhesion

Contact angle θ_e < 90° \Rightarrow Plates stick together Force of attraction ~ $\pi R^2 \times 2 \ \gamma_{LV} \cos \theta_e / H$



Example Water, R=1 cm, H=5 μ m, $\theta_e=0^{\circ} \Rightarrow$ Force of attraction is 10 N

Deposition By Stretching of Capillary Bridge

Needle retraction with contact line pinning causes dependence on receding angle

Droplet attached to substrate depends on droplet volume and contact angles of needle/pin and substrate

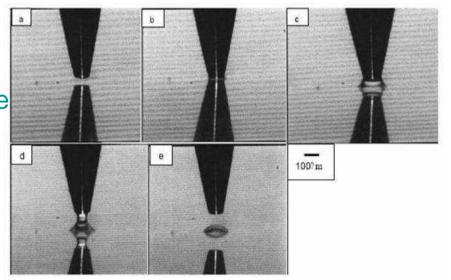
Spotting Pins & Deposition

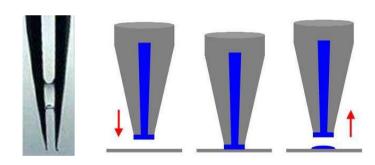
Example Pin Spotting Process

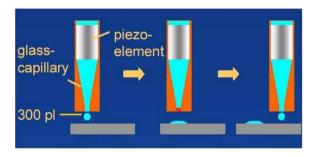
100 μm slot, 20 μm exit, distilled water loaded (a)-(c) approach and spot forms – capillary bridge

determined by θ_{pin} , θ_{glass} , curvature in reservoir (i.e. width) and $\theta_{receding}$

(d), (e) bridge stretches and breaks

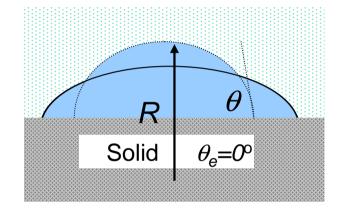

Spot size depends on geometric parameters (tip and reservoir) and wetting properties (pin and substrate)


Mechanical Contact


Tweezers need contact/tapping to eject, so formation of film on flat tip removes this need

Inkjet Printing

Induced capillary jet/tube break-up - 250-300 µm spot size Non-contact/independent of substrate wetting properties

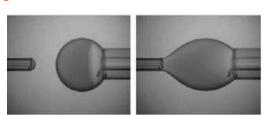

Laplace Excess Pressure

Pressure Across a Curved Surface

Two principal radii of curvature, R_1 and R_2 If principal radii of curvature are equal: $\Delta P = \frac{2\gamma_{LV}}{R}$

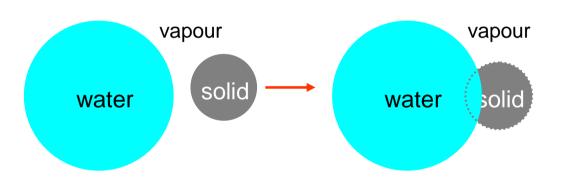
Reducing ΔP is an alternative way to explain why a droplet spreads into a film on surface with θ_e =0°. Droplet spreads until the spherical radius R is infinitely large

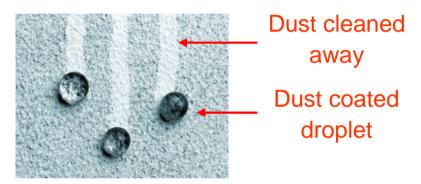
$$\Delta P = \gamma_{LV} \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$



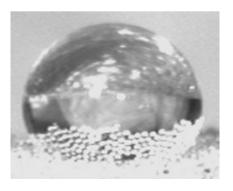
Coalescence and Drainage

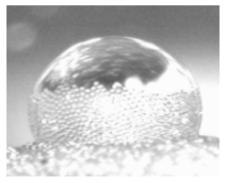
Two droplets merging can reduce total surface energy - Smaller one drains into larger on.

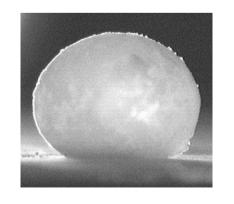

Can be used to form capillary bridges



Adhesion of Dust

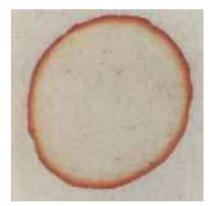

Particle Attachment

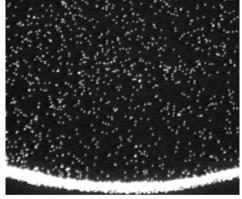

To minimise surface energy grains prefer to cling to water-air interface More hydrophobic grains "stick out" further, but even highly hydrophobic grains attach themselves to a droplet of water

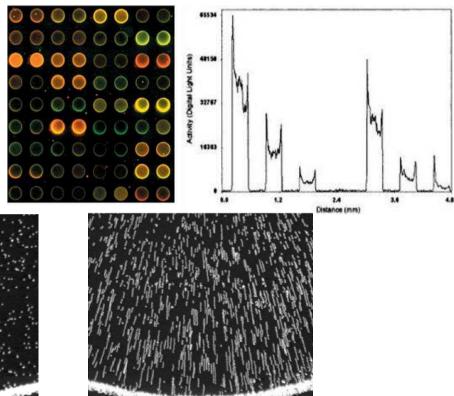


Hydrophobic Silica Particles

Extreme Case – Liquid Marbles

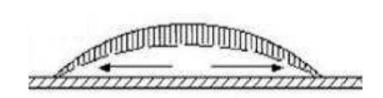

Reference McHale et al, Eur. J. Soil. Sci. <u>56</u> (2005) 445-452, and McHale et al, Submission to APL (2006)


Donuts & Contact Line Pinning


"Coffee" Ring Stains

- Evaporation of droplet with solute
- Contact line is pinned
- Deposition often occurs at edge of droplet
- Relative humidity determines rate

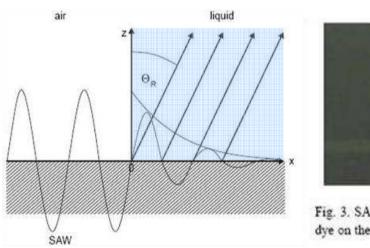
low humidity ⇒ fast ring formation



Suppression of Ring Stains (after Blossey)

- Initial solute concentration is high
- Contact angle is very small
- Reduce contact line pinning
- Initial deposition needs to be homogeneous strong memory of initial distribution

Diffusion Limit & Mixing


Diffusion Limit

Diffusion time for 1 mm motion of 100 nm DNA is 30 hours. Implies slow hybridization in a fluid film of 50 μm

Table 1 Calculated diffusion times for different diffusion lengths and three different particle sizes. A DNA segment of only 100 nm lengths needs about 30 h to diffuse over a distance of only 1 mm Oligonucleotide PCR product diffusion potassium (6 nm) (100 nm) length (um) ion (0.2 nm) 0.2 ms 100 ms 6 ms 10 20 ms 10 s 600 ms 100 60 s 20 min 200 s 100 min 30 h 1000

Wixforth/Advalytix Solution

Use Surface Acoustic Wave (SAW) streaming to induce micro-agitation mixing

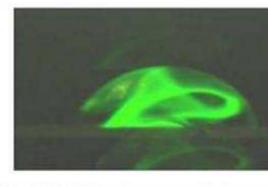
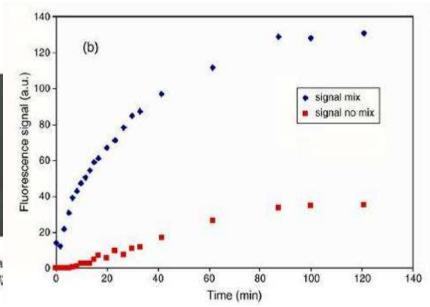



Fig. 3. SAW induced internal streaming in a sma dye on the surface of the chip is dissolved by SAV

Fluorescence labeled micro array experiment with and without SAW mixing.

Not Covered

- 1. Contact Angle Measurement Methods
- 2. Dewetting & Film Bursting
- 3. Electrowetting & Double layers
- 4. Marangoni Forces/Surface Tension Gradients
- 5. Surfactants

Take Home Messages

- Capillarity dominates for sizes much less than the capillary length,
 i.e. for water this means the sub-300 micron range
- 2. Patterns of hydrophobicity/hydrophilicity can confine water to spots and "virtual" channels. They also distort spot shapes
- 3. Substrate with $\theta_e = 40^{\circ} \pm 5^{\circ} \Rightarrow \pm 10\%$ error in spot area
- 4. If θ_e =40°, then 7% roughness \Rightarrow 10% increase in spot area
- 5. Dust/particulates attach to water-air interfaces
- 6. Evaporation and contact line pinning ⇒ ring-stains/donuts

The End

<u>Acknowledgements</u>

Collaborators

Prof. Mike Thompson (Toronto), Prof. Yildirim Erbil (Istanbul)

Dr Stefan Doerr (Swansea), Dr Andrew Clarke (Kodak)

Dr Mike Newton, Dr Neil Shirtcliffe, et al. at NTU

Funding Bodies (EPSRC/Dstl & EU)

GR/R02184/01 – Super-hydrophobic & super-hydrophilic surfaces

GR/S34168/01 – Electrowetting

EP/C509161/1 – Extreme soil water repellence

Dstl via EPSRC/MOD JGS

EU COST Action D19 - Chemistry at the nanoscale

Illustrative Images

See reference/acknowledgement footnotes on individual slides